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Abstract

A mecthod of data acquisition and data analysis is described in which the perforinance of hflichclson-type
interferometers with unequal arms can be made nearly the same as interferometers with equal arms. The
method requires a separate readout of the relative phase in cacb arm, made by interfering the returning
beam in each arm with a fraction of the outgoing beam. Instead of throwing away the information from a
single arm by subtracting it from that from the other arm, the data in one arm is first used to estimate the
laser phase noise and then correct for its effect in the normal diflerenced interferometer data

PACS numbers: 04.80.N, 95.55.Y, and 07.60.1,




experiment, for example, it is desired to very accurately measure the relative strain between free-flyiug

spacccraft which, because of the solar system orbits on which they fly, cannot maintain equal distances
between them. It is the purpose of this paper to describe a method of data processing that will achicve
almost al the noise cancellation of an equal-arm interferometer, evenin a case where the arms arc rather

badly unequal.

Il Unequal-Arm Interferometers

Two space missions have recently been proposed [1 ,2] that consist of free-flyiug spacecraft which track each
other with lasers. Inone of these, LISA, the spacecraft fly on orbits that arc non-circular to a few tenths of
a percent. In the other, SAGITTARIUS, the deviations iu the armlengths can be amost 2%.In order to be
sure of detecting gravitational waves, these missions require a strain scusitivity of about h ~ 10°2]. If one
were to usc normal interferometer techniques, the SAGITTARIUS 2°%0 armlength diflerence would require
the laser noise to beless thau h(l/2Al)~ 3 x 1020, aud the LISA arm difference would require laser noise
less than 3 x 10-19. Neither of these laser phase stabilities arc currently obtainable.

However, the equal-arm interferometer scheme described iu the last section is only a particular case of a
more general set of agorithms that cau be used to analyze the data iu the two arms. 1 t is the case where
a real-time subtraction is performed by applying the signal from ouc arm at one time to cancel the noise iu
the other arm at the same time, the times being the same because the times of flight in the two arms arc
identical. If the times of flight arc different, then the information from the two arms may still be used to
correct for the fluctuations of the laser, but the corrections would be applied at times consistent with the
differences in armlengths.

To be specific, let us describe the following data analysis procedure for a two-arm, unequal-arm interfer-
ometer formed by four spacecraft, as shown iu Figure 1. Each spacecraft is assumed to send a laser signal
aud to receive a signa from its counterpart. There is also assumed to be a two-way reference signal sent aud
received between the two spacecraft that arc closc to each other. The two central spacecraft correspond to
the central beamsplitter of a laboratory Michelson interferometer. The single end spacecraft correspond to
the end mirrors.

L.et us then define:

. Pi(t) as the phase noise of the laser in the i*" spacecraft, so that the phase of the i** laser is I =




I Michelson Interferometers

The Michelson interferometer was devised as a method to make very precise relative distance measurements.
In the common laboratory version of the instrument, a laser signal is divided by a beam splitter, the two
divided beams arc sent out along different paths, the beams arc reflected back to the beam splitter, and the
beams then interfere to produce a light fringe. Theinterferometer will detect than.gcs in the difference in
the lengths of the two arms by monitoring the intensity of the fringe.

The advantage of the interferometer over a system where a single arm is used and where the returning
light interferes with a fraction of the outgoing light to form the fringes lies in the relative immunity of the
interferometer to fluctuations in the phase of thelaser. In a single arm, jitter in the laser phase over the
round-trip light time would cause the interference pattern to fluctuate, mimicking a change in the path
length. However, in an interferometer, the phase fluctuations arc carried out equally along the twoaims
and, when the return beams finally combine, the fluctuations will be the same in both signals and will camel.

This scheme supposes, of course, that the lengths of the two arms arc essentialy equal. Indecd, if the
two arms of length /3 and 1,arc unequal by an amount Al =1 - 1,, then the phase noise in the interference

fringe will be given by (wc adopt units in which the speed of light ¢ = 1)

Ap(t) = p(t - 2l1) - p(t - 2l2) = p(t — 201)(2Al1)

where p(t) is the phase noise in the laser. The relative strain noise in the interferometer is therefore

where the brackets denote time average, and v isthe nominal laser frequency. Thus, the residual phase noise
in the interferometer is a fraction 2Al/l of the laser frequency noise.

In the laboratory, the armlength difference Al may be initialized to near zero by minimizing this noise, ancl
then this length may be stabilized by adjusting the path so as to maintain a constant intensity of the fringe,
the path adjustment required giving the measure of the external influence on the armlengths. However,

there arc cases where the paths cannot be maintained at equal lengths. 1 n a spaceborne gravitational wave



vt + pi(t).

. li(t)asthe one-way light-time for the signal along tile i*" interferometer arm, including slow drift

velocities from the orbits and faster changes produced by gravitational waves.

The signa received by each spacecraft is allowed to interfere with a fraction of the local laser power being

sent out. The phase of the beat signa read in the it spacecraft photodiode is then given by

si(t) = Pi(t = L) — Bi(t) = - 2nvli(t) 4 pi(t — &) — pa(t)
(1)
Sk(t) = I)i(t b l@) e ])k(t) = *27Tl/l,'(t) -+ ])i(i - lt) - ])k(t),

where i takes on the values {1,2} and k takes on the appropriate value from the set {3, 4}. The phase

reference signal readout is similar:

oi(t) = —2mvd(t) 4 p;(t — d) — pi(t), (2)
whered is the distance between the two closc spacecraft and where {i, j} arc chosen from {1, 2}.
If all signals s;(t) and 0;(¢) arc read out and telemetered from the spacecraft to the ground, then corbi-

nations of these signals may be used to synthesize an interferometer in data analysis. The differenced phase

reference signal is

oat)_or(t) =)+ pi(t = D] - [pa(t)4 p(t - a4y

In the frequency domain, wc have

o2(f) -0y (“f) =[pi(f) - P2(f)] (1 4 c?m’fd) , @

so that, knowing the distance d, one can apply a linear filter and rewrite the differenced phase reference

signal as




(1) = pr(t) - p2(2)- 4

This time series will tie the lasers iu the two central spacecraft together as if they were beams from a single

laser. The main signa is essentially anintegrated Doppler measurement, at the central point, formed by the

combination

Zi(t) = Si(t) + Sk(t - l,) == ]),(t == 2l,) - ]),‘(t) - 47Tl/l,(t) (5)

By combining z;(t) and z2(t) from equation (5) and using the reference signal ¢{t) from equation (4),

onc can write the interferometer signa in terms of the noise inone laser only

8(1) = 21 (1) — z(t) — C(t— 21a) 4 C(t) = pa(t — 2h) — pi(t - 2l5) — 4mwAl(t). (6)

The algorithm to bc used in the case of unequal arms consists of a procedure to synthesize the laser phase
noise in this signa so that its eflect in equation (6) may be subtracted away. To do this, wc first assume
that the signal is dominated by laser phase noise in the bandwidth of interest, in which case the Fourier

transform of 2;(¢) would bc given in terms of the transform of p;(¢) by

2 () = m(p) (A0 1)

where the expression in parenthesis is the transfer function for differencing at the round-trip light-time,

analogous to cquation (3). One may thercefore use 21 () to generate an estimate p1(f) of p1(f):

: 21(f)
P = i T (7)

Fourier reconstruction of the time serics then gives estimates j, (1) and py(t) = P1(t) = ((1) of the phase noise




of the lasers. These estimates can then be used to predict the cffect of the laser noise in the interferometer

via

zi(t) = pa(t - 20;) — Pa(t),

ant] the resulting estimate,

b(t) = 51(t) - 2(t),

of the differenced interferometer signal can then be subtracted from 6(t) to give a signal

A(t) =6(t) (1),

"

which now dots not contain the laser phase noise. This procedure will work as long as one remains far from
the poles of equation (7), that isat frequencies well away from f, = n/2l;, where nis an integer. Of course,
this procedure breaks down near f= O as well, and low frequency is the place where there is the most
scientific interest. However, as one goes towards low frequencies, the noise in unequal-arm interferometers
cancels anyway, and the noise still tends to zero at long periods. This will be shown explicitly in the next
section.

Finaly, wc point out that the procedure we have just described is the most general one, where al lasers
at the four stations are independent and all signals arc read out separately. In a laboratory setting, theend
spacecraft would probably be replaced by simple mirrors (equation ,(5) would still be valid for the signal
read out in each arm). Also, it may be possible to have a single laser at the vertex of the interferometer,
or to phase-lock the central lasers, so that there is not p; and P2 but only a single phase noise p. In this
case there would be no o; measured and ¢ would be zero. However, the onc thing that must be done in this
unequal-arm scheme is that the “Doppler” signals must beread out separately in each arm and not simply
combined in the usual interference fringe. One must not throw away the information on the behavior of the

laser by subtracting it almost all away.




111 Theoretical performance of the algorithm

The limitations on the procedure described above arrive from two sources the random shot noise in the
readout of the laser phase at each spacecraft ancl the error in the knowledge of the actual time-of-flight of
the signals in the two arms. In this section, wc will discuss the limitations that these errors placconthe
tolerances for the system.

We assume independent phase noise n; (t) in the readout of the i arm (i= 1, 2) and wc explicitly write
the armlength as a sum of slow drifts i (t) outside the spectral band of interest and a gravitational wave
signal within the band. ‘his signal is added to onc arm and subtracted from the other arm, a characteristic
of gravitational waves with a simple choice of wave polarization and propagation vectors. Its contribution
to each arm is given by the Doppler three-pulse response function, as given by Estabrook and Wallquist [3],
which in our simple assumed case simplifies to 3[h(t)— h(t —2l:)]. We usc detection of the gravitational
wave as our measure of sengitivity, but it is representative of any distance change that onc wants to measure.

Our knowledge of the two armlengths 1,, 1,is not exact, being limited by the errors wc make in measuring
the position of the central and end masses of the interferometer. Let 4/, and 6labe such errors, and for
simplicity let us assume that their root-mean square values arc the same. Wc also assume, for the sake of
simplicity, that the phase reference signa {(t) in equation (4) is null, i.e. that the two phase noises p; and
P2are equal.

In the reconstruction of the laser phase noise, using the method described in the previous section and

taking into account the contribution of the error él;, equation (7) is replaced by

) = e ®)
famif(h i 8ly) _}1
Now z;(f) is equal to
. Jc4ﬂ’ifll _ ,1
2 (D) =p1 () [l - 1]+ () A V()

where the coecflicient of h(f) comes from the Fourier transform of this particular form of the three-pulse




response function. Therefore our estimate of the laser phase noise is given by

amifly | l

S R L P

The differenced “Doppler” signal, the Fourier transform of §(¢) from equation (6), has the following analytic

form

_ Arifly, Amifly 21
6(4) = p1 () [e3mh - Amiflo 4 fuy () - m2ON 4 wn o (10

The reconstructed contribution of laser phase noise to this phase diflerence can be written in terms of (/)

8(f)521(f) _ 22(f) _ ﬁl(f) [e47'(if(ll + 611) _ c47(2'f(12 +- (5[2) . (11)

After substituting equation (9) into equation (11) wc get the following expression for the estimated phase

difference

. InII(jU\J[’ 47”fl1 - 11 Anif(ly 468l ) _ Amif(la 4 612)]
8(f) = [m QRS i T

—4 5

847rif(11 + 611) _ c47rif(l2 -+ 612)]
[t @+ 80y ]

+n1(f) (12)

Finally, if we subtract the estimated phase di flerence due to the laser noise (equation (12)) from the actual

phase difference (equation (10)), we get a signa, A(j), that has the following terms

AG) = 6(f) - 8(f) = PG+ N( + H( (13)



where P(f), N(f), and H(f) arc cqual to

6ly <C47rifll - ]) c47T’ifl2 —_ 5[1 (047riflg _ 1) c47lif11

c47fif11_. 1 - 27n'f_~

P(f) = dmifpi(f) TS T (14a)
ni(f) [c“”f 14 amifsly AT l?] - n2(f) [c“”f h — 14 anifsl, e4m'fll}
N(f) = : : : - 14b
v [e4mfl1 — 14 4mifél, c4mfll] (140)
8l (Amifly _ 1\ Amifly _ g, (Amifls = ) dmifl mifl
H({) = 27r1/h(f)[ : (c m ]) T 6l](c T )c s kbt 11 (14c¢)

Inthe long wavelengths limit ( fIj, j1,<<1 ) equations (14) simplify and the equation for A(f) becomes

- ly 4+ bl - —
AG) wdmifp (202200 (f>[L2h it = i)

+ 2mvh(f)ly %+- — ==

(15)

As an example, let us assume that the relative laser frequency noise is about 5 x 1013 Hz /2. We
further assume that the dominant frequency component of the gravitational wave we are trying to observe
is 10-2 Hz, and that the gravitational wave amplitude is 10 Hz !/2. With these values, equation (15)
gives a requirement on the accuracy with which the armlengths must be determined in order for the data

analysis agorithm to be correctly applied. I'bus, from

m(n) (£) |25 o B a | < monn, (19
v 2 162

we derive a requirement that the difference inarmlength must be known to better than about 100 meters and

that the individua armlength must be known absolutely to a factor I/Al worse than that (i.e, an error of




45 kilometer for a Al/l of 2%). Tinto and Estabrock [4] have shown a method for measuring the armlength
of an interferometer cavity, which can also be applied to our interferometer design. The requirement on the
precision of measuring the armlengths that wc have deduced above can be easily achieved by computing the
autocorrelation function of each phase difference z; (t) (i: 1, 2). The autocorrelation function of the laser
noise has three maxima, at times zero and d42l;. Since the other noise sources have autocorrclation times
smaller than 21, the armlength can be determined, within the error required, by searching for the position

of the 21, peak.

IV Numerical Simulation

1 n this section we will present a computer simulation of the signal processing for unequal-arm interferometers.
We assume again that ¢(t) is null. We have simulated this single phase noise p(t) of relative amplitude
~5x 103 rad using a gaussian random number generator. Shot noise 7:i(t)~ 5 x 10--4 rad, also with
gaussian character, has been simulated for each of the interferometer channels (i=1, 2). It has further been
assumed that the end laser is perfectly phase-locked to its received signal, to simplify the analysis. Morcover,
in order to approximate a realistic experiment, an error 6li=410min our knowledge of the two arm lengths
has been introduced. The simulated experimental data has been assumed to be taken every sccond, for a
total of N =215= 32768 points.

To these noise records a simulated gravitational wave was added with amplitude h = 1020 and the data
were analyzed to determine if the gravitational wave could be detected in the presence of the noise. T'wo
cases were chosen. The first corresponds to the parameters for the SAGITTARIUS mission, with its short
round-trip light time but with the greater difference in the arms. This case thus tests the ability of the
algorithm to perform with large discrepancies in armlengths. The round-trip light time for the two arms
were taken to be71=2l1= 7.2 s and 7 =2lp= 7.3 s, and the simulated gravitational wave signalhad a
frequency of 10°Hz. The second case corresponds to the heliocentric I, ISA mission. Here, the armlengths
are greater and are relatively much closer to each other. The light time for the two arms was T' = 16.70 s
and 75 = 16.73 s. Becausc of the longer round-trip light time, part of the band of scientific interest will lie
above the first pole of equation (7). To demonstrate the ability of the algorithm to perform in this range, a
gravitational wave frequency of 10-'1 Hz was chosen.

For al cases the phase readout in each arm is calculated using




k
Zi(tk) = pltk = 13) = p(te) + ma(te) dmv ) (e = T3) = h(te )] At (k=0,...,N 1)
k=0

where h(t) =k cos(27 fyt) isapure sinusoidal gravitational wave signal of amplitude and frequency as stated
above, and At =1 scc. The gravitational wave signal is added to aam 1 and subtracted from arm 2. Since
Jyisnot an integer number, the value of pat ¢ - 7; is not given. Wc have determined it by means of a linear

fit between two successive points, i.e.

p(te — 13) = ap(ty - 7)) + Bty — 7 = 1)

where 7;= Int(7;) and a + 8= 1. Since p(tx) is not defined for ¢ <0 and for t; > N, wc have minimized
the boundary effect problem by closing the time series in a circular way.

Taking arm 1 as a reference, its phase readout signal is Fourier analyzed to give
N .
a(fa) = a(ty)em I Inti
k=:1

where f, = n/N. Fromz;(f) wc get the estimate p(f) for p(f) through equation (7), which now reads,

taking into account the error 6! and the discrete sampling,

z1 (f,)
1_ o/e2mjTin/N _ ﬁ/CZTrj(T,- +- /N

P(fn) = n>1 (17)
In deriving equation (17) wc have made use of the fact that the error 6/ dots not change 7;,but only the
parameters « and S.The poles of equation (17) make it impossible to determine the zero frequency term,
which wc have taken to be zero, i.e. §;(f = O) = O. The estimate of p(f) is then inverse transformed to give
an estimate #(t) of p(1).

From §(t), the contributions 2; (t) of the laser phase noise to z; (¢ ) were formed via
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2(tk) = Pt — 2(Li 4 8L)) ~ pte) -

The resulting estimate 8(tx) = 2, (tx) — £2(tk) was then subtracted from the true 8(tx) = 2; (tx) - 22(tk),
to give a signal A(tg)= 6(ty) -- 8(tx), whose power spectrum is given by equation (15). Apart from the
remaining dependence on p(f) due to the nonzero 8/, A(t) contains only shot noise and gravitationa wave
signal. Its power spectrum is then analyzed to scc if the pure sinusoidal h(t) can be found against the
background of the other noise.

The sequence of results of this data analysis is shown in Figure 2. Figures 2(a) and 2(b) represent asmall
portion of the time series p(t) and the low frequency region (f < 0.1 Hz) of its power spectrum. Figure 2(c)
shows the same region of the power spectrum of é(¢). Finally, figures 2(d) and 2(c) show the fina output
of the data analysis, A(t), together with its power spectrum around the region f~ 0.01 Hz. Figure 2(f)
displays the equivalent of 2(e) for the long baseline case with gravitational wave at 0.1 Hz.The counterparts
for figures (a)- (d) for this case are indistinguishable from the shorter baseline case. In both cases, we notice
that the signal in a bandwidth of 1 /N Hz may be clearly seen above the shot noise background, with the
expected signal-to-noise ratio of +/N.
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Appendix

In this Appendix we provide an alternative way of using the information from the two phase differences
z1(t), 22(t) in order to remove the laser phase noise from an interferometer of unequal arms. ‘I'his method is

more direct, and, as wc shall show below, its effectivencss is equal to the method we have described in the

11




body of this paper.

Let us consider the two phase diferences z, (f), 22(/) in the Fourier domain

[ i ,
()= g0+ 0 [l = )

all) = o) = S = 1] el

If we dividez;(f)by e transfer function c4mif(l; + é1;) -. jand then take the difference between the resulting

two quantities wc obtain the following expression

of) = c4mf(73£9,) 1 C4mf(%({l‘),ji"] = P(f)+ N(f)+ H(T)

where P, A, and H arc

dmifly _ Axifly _
P(f):pm{ ¢ Lo _¢ ! } Al)

edmif(Lh46h) 1 T ednif(la46l) _ 1

ny(f) na(f)
NI = sy - ordtrem —] (A2)
_ I/h(f) e47ri.ﬂl -1 c41r‘if[2 -1
H = 2f {e‘wmu By 1 ) GGy — 1 (A.3)

If wc expand equations {(A.1)-(A.3)in the long wavelengths limit ( fél; << fly,fl; << 1) wc deduce the

following expression for O(f)

— 11612 - lzﬂ]_ le (f)lz - 712(f)l] : l/h(f)
O(f)”p‘(f)[ Ll } =

12




Wc note that equation (A .4) can be obtained from the corresponding expression deduced in Section Il if we

divide equation (15)by 47 flp, and neglect terms of order O(h 6l) and O(nél).
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Figure Captions

Figure 1.

Gceometry of a spacecraft two-arm jnterferometer. Spacecraft 1 and 3 track each other, and spacecraft 2 and

4 track each other. Spacecraft 1 and 2 exchange a phase reference tracking signal.

Figure 2,

Sequence of results of the data analysis.

(@). Small portion of the time series p(t).

(b). Low frequency region (f < 0.1 Hz) of the power spectrum of p(t).
(c). Low frequency region (f < 0.1 Hz) of the power spectrum of §(1).
(d). Fina output of the data analysis, A(t).

(e). Power spectrum of A(t) around the region f ~ 0.01 Hz.

(f). Same as Figure (e) for the long baseline case, with a gravitational wave at 0.1 Hz.
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